
Open Transport Switch - A Software Defined Networking
Architecture for Transport Networks

Abhinava Sadasivarao* Sharfuddin Syed* Ping Pan*

Chris Liou* Andrew Lake† Chin Guok†

Inder Monga†

*Infinera Corporation †Energy Sciences Network
Sunnyvale, CA 94089 Berkeley, CA 94720

{asadasivarao, ssyed, ppan, cliou}@infinera.com {andy, chin, inder}@es.net

ABSTRACT
There have been a lot of proposals to unify the control and
management of packet and circuit networks but none have
been deployed widely. In this paper, we propose a sim-
ple programmable architecture that abstracts a core transport
node into a programmable virtual switch, that meshes well
with the software-defined network paradigm while leverag-
ing the OpenFlow protocol for control. A demonstration
use-case of an OpenFlow-enabled optical virtual switch im-
plementation managing a small optical transport network for
big-data applications is described. With appropriate exten-
sions to OpenFlow, we discuss how the programmability and
flexibility SDN brings to packet-optical backbone networks
will be substantial in solving some of the complex multi-
vendor, multi-layer, multi-domain issues service providers
face today.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—Circuit-switching net-
works; C.2.3 [Computer-Communication Networks]:
Network Operations—Network management

General Terms
Design, Standardization

Keywords
sdn; transport networks; optical networks; virtualiza-
tion; otn

1. INTRODUCTION
Significant advances in optical technologies, bit rates

and deployment of Optical Transport Network (OTN)
[9] protocols have enabled transport networks to pro-
vide flexible multiplexing and switching functions in

addition to basic data transport and survivability. In
addition, transport network elements are being supple-
mented with more intelligent set of features for flexible
management. The growth in traffic volumes, changing
traffic profiles and types of applications has prompted
service providers to rethink not only how to engineer
their IP and optical backbone transport optimally, but
also to ease their operational and management over-
head.

In the Internet core, traditionally, the design approach
has been to place all the network functions within the IP
layer (routing, signaling, protection) and use static op-
tical trunks interconnecting these L2/L3 devices. This
hop-by-hop architecture of packet processing and for-
warding can be optimized significantly by taking ad-
vantage of the dynamic transport capabilities offered
by the state-of-the-art optical network. In addition, ser-
vice providers typically manage their L3 networks and
transport layer operations independently.

In this multi-layer setup, provisioning bandwidth in-
volves multiple steps: provisioning transport circuits,
configuring interfaces and creating appropriate forward-
ing entries in the L3 devices, and in the end, bridg-
ing the path to create an end-to-end circuit. The dis-
tributed nature of the provisioning requires UNI and
NNI signaling to help provision each segment of the ac-
tual datapath. This approach adds complexities to the
transport control plane mechanisms (GMPLS [5]/M-
PLS [4]/MPLS-TP [6]).

The latest trends in application delivery architectures,
like cloud computing, not only aggregate the user traffic
but also create large data flows between consolidated
data-centers for state and data synchronization. The
need for cost and performance optimization including

1



the need for service providers to create new network ser-
vices relevant to the above application patterns is driv-
ing the requirements for dynamic, multi-layer, multi-
domain networking. Multi-layer optimization, with ap-
plications such as dynamic router bypass, not only has
technology drivers, but also influences CapEx economics.
Even though the benefits of such approaches are well
understood as well as protocols have been created by
the community - the complexity of existing protocols,
vendor interoperability and lack of management tools
has prevented these applications from being deployed.

Software-Defined Networking (SDN), decoupling of
the data plane from control plane, has been discussed
recently [2] as a viable and simple approach to pro-
vide the required functionality. The approach promises
meeting the manageability, flexibility, and evolvability
requirements in large service provider networks. Al-
though, much of SDN efforts today are concentrated on
networks at Layer 2 and above. Many vendors have
added OpenFlow capabilities to their Gigabit Ether-
net switches. There have also been efforts in building
hardware architectures [10] and switch fabrics for effi-
cient OpenFlow enabled network devices [1]. OpenFlow
based enterprise wireless network management has also
been proposed [12]. All these are Ethernet/IP centric.

In this paper we propose a virtual abstraction of the
transport element, Open Transport Switch (OTS), that
integrates within a SDN framework and offers simple
OpenFlow protocol based control of the packet-optical
cross-connect (XCON) and bandwidth allocation capa-
bility of the optical element. In addition, we showcase
a prototype implementation of this abstraction and de-
ployment at a test network in Long Island. We show
SDN as a viable approach for building wide-area packet-
optical networks.

2. ARCHITECTURE
The central approach is to abstract the interface be-

tween packet and circuit layers, leading to virtualiza-
tion of the transport layer. Let us consider a typical
multi-layer service provider network (Fig. 1). The net-
work is segmented into various layers each running their
own control plane for routing and signaling. Each layer
may have equipment from different vendors. Multi-layer
integration becomes a challenge as 1) GMPLS proto-
cols for multi-layer require UNI relationship which hides
each layer’s topology (Fig. 2) 2) Multi-vendor imple-
mentations of GMPLS protocols and path-finding are
fairly different with interoperability at a least common
denominator of functionality 3) Different EMS/NMS
systems are ultimately used to manually manage each
vendor, leading to a static, pre-planned network solu-

tion.

Figure 1: Multi-Domain, Multi-Layer

On the other hand, the applications at the edges of
these networks require high-bandwidth paths for ex-
change of data, for example data center interconnects.
These connections require connectivity and varying amounts
of bandwidth, irrespective of the protocols used to trans-
port the information. The underlying transport infras-
tructure could be packet/MPLS, OTN or MPLS-TP. If
the resources viz. ports, links and bandwidth can be
virtualized with generic abstractions, the applications
would need to program this virtual overlay network
of devices interconnected by links (Fig. 1). The network
then truly becomes open, programmable and flexible.

Figure 2: Service Provider Transport Network

Open Transport Switch (OTS) is an OpenFlow [11]
enabled light weight, virtual switch that represents a
transport network element (NE). Applications can now
use the northbound API of a SDN controller to request
provisioning of circuit cross-connects or aggregation of
packet interfaces into optical trunks with the required
capacity and QoS parameters, if needed. This gives
service providers the ability to create a unified view of
the network (Fig. 3). The SDN Controller offers the
abstract topology to smart applications enabling them

2



to perform optimal path computation, provisioning and
monitoring based on their constraints. Applications not
capable or interested in their own path-computation can
request the bandwidth capacity and QoS, outsourcing
the end-to-end path computation to a specialized car-
rier SDN controller or leverage an application similar
to PCE, that can match the request for the end-to-
end path across multiple domains/layers to meet the
requested SLA.

Figure 3: SDN Enabled Transport Network

Fig. 4 shows the building blocks of OTS consisting
of the following components:

Discovery Agent : is responsible for discovery and reg-
istration of SDN-controlled resources. It appropriately
notifies the Controller dynamically as and when the
NE and/or the Network state changes (for example,
link up/down). This typically happens via the switch
OFPT_FEATURES_REQUEST, OFPT_FEATURES_REPLY and other
related Modify State messages [11]. How the discov-
ery agent retrieves this information from the NE is upto
the implementation or via proprietary vendor interfaces.

Control Agent : is responsible for monitoring and prop-
agating notifications and alarms to the Controller, al-
lowing network admins to monitor performance, faults
and alarms in the network. These include change notifi-
cations for any new equipment/facilities provisioned/de-
provisioned. Loss-of-light, Loss-of-sync, Loss-of-signal
are some examples of alarms. Faults could range from
link failures to equipment failures. (Note that some of
equipment related alarms could be reported by both
the Control and Discovery agents). This way, the con-
troller’s state is asynchronously (or synchronously) kept
consistent with the state of the underlying network.

Dataplane Agent : is responsible to program the NE
datapath to create/update/release circuits/LSP. The dat-
apath entities could be Time slots, XCONs or MPLS
labels. This programs the underlying network infras-
tructure and helps complete the datapath. The con-
troller sends appropriate OpenFlow messages (similar
to OFPT_FLOW_MOD message). Again, how the Dataplane
Agent programs the particular NE database/forwarding
tables could be through vendor specific interfaces.

The northbound interface from OTS to the Controller
is OpenFlow 1.0 [11]. Given that OTS is virtualizing
transport NE, much of the Ethernet centric OpenFlow
messages are not used. With addition of extensions (see
sections 2.1 & 3), the Controller can send requests to
OTS to provision/release transport circuits.

OTS being a virtual switch has multiple advantages:

• OTS is minimally stateful: All the alarms, stat
counters, forwarding table entries are stored in the
NE database and could be retrieved on-demand.
OTS need not maintain these managed objects.
This enables OTS to be light on the use of on-
switch resources.

• OTS is lightweight and portable: Given that most
of the state is maintained by the NE, if the south-
bound interface from the OTS agent to the NE is
flexible to be implementation and/or vendor spe-
cific, the OTS abstraction could be made to run
recursively on a standalone server or EMS or any
other machine which can communicate and main-
tain an active OpenFlow session with the Con-
troller.

• OTS Southbound Interface: The southbound in-
terface from the OTS agent to the NE could also
be standard hardware abstraction layer allowing
plug and play of multi-vendor transport elements
that conform to that interface.

• Multiple OTS agents could be run on the same
NE. These different instances can be used to hard-
partition the ports/wavelengths present on the NE
and manage their respective resources only, thus
supporting a multi-tenant architecture. (See sec-
tion 3.2)

Figure 4: OTS Building Blocks

2.1 OpenFlow Extensions
OpenFlow [11] only addresses packets, thus is L2/L3

centric as of today. With the need to control opti-
cal transport equipment with the same software con-
troller, the protocol currently needs to incorporate cir-
cuit switching constructs like time-slots or cross-connects.
We propose extending OpenFlow with messages that

3



enable provisioning/release of circuits. In order to vir-
tualize the network, we use opaque, MPLS-style labels
to represent links i.e. a sequence of ingress/egress ports.
We also indicate the style of circuit that needs to be
setup (see section 2.2). Along with these, the mes-
sage includes service rate and latency parameters along
with provisioning actions (ADD_XCON and REM_XCON).
For now, we assume the type of service/traffic to be
Ethernet. However, the protocol could be extended to
OC-192, OTU3, Fibre Channel and so on.

struct ofp_id {
// Host ID - DCN IP Address of the Node
uint32_t node;

// Flow ID maintained by the Controller
uint32_t label;

};

struct ofp_xconn {
struct ofp_header header; // OFPT_VENDOR
uint32_t vendor; // Vendor ID

uint8_t pad[4];

struct ofp_id src; // Source of the flow
struct ofp_id dst; // Destination of the flow

uint32_t rate; // Rate of service (Mbps)
uint8_t latency; // Latency - 0 to 255
uint8_t style; // Implicit = 1 Explicit = 2

// Unidirectional = 1 Bidirectional = 2
uint8_t directional;

uint8_t pad_extra[1];

// ADD_XCONN = 0xFF REM_XCONN = 0xFE
struct ofp_action_header actions[0];

};
OFP_ASSERT(sizeof(struct ofp_xconn) == 40);

2.2 Modes of Operation
We already described how SDN for transport can pro-

vide an alternative to inter-working UNI/NNI protocols
associated with distributed routing and signaling. Inte-
grating OTS into today’s large service provider trans-
port networks may become a very complex exercise (we
are infact trying to make transport networks more flex-
ible and manageable!). Taking this into account, we
propose two modes of operation to allow smooth inte-
gration of, and transition to transport SDN.

2.2.1 Explicit Mode
Fig. 5 depicts Explicit Mode. In this mode, the Con-

troller has the knowledge of every NE in a particular
domain. After optimal/constrained path computation,
provisioning a circuit becomes a exercise of the Con-
troller programming all the transport devices along the
path in a hop-by-hop manner across single or multiple
transport domains.

Figure 5: Transport SDN Explicit Mode

2.2.2 Implicit Mode
Fig. 6 depicts Implicit Mode. In this mode, the Con-

troller is aware of only the edge nodes in every trans-
port domain (Ethernet/MPLS/OTN). Within the do-
main, the existing routing and signaling control plane
can be used to setup path. The Controller sends pro-
visioning request, specifying the source and destination
to the SDN-aware nodes at the edges of the network.
The source node then triggers MPLS/GMPLS control
plane to setup the circuit. The Controller being aware
of NE type and capabilities, stitches these segments
across multiple domains to form an end-to-end circuit.
Implicit mode adds great flexibility in gradually incor-
porating OTS architecture into existing transport net-
works. Without disrupting current deployments, service
providers may choose to continue using intra-domain
control plane while still being SDN aware. From a
Controller’s perspective, this edge-to-edge intra-domain
path appears as a single network fabric of a given capac-
ity. Service providers depending on the necessary man-
agement effort, can gradually make all the NEs SDN
capable, moving to an explicit deployment model.

Figure 6: Transport SDN Implicit Mode

Note that these are not the only two feasible models
in Transport SDN. In a given network, it is possible
to have SDN circuits created with mix of implicit and

4



explicit modes. This prototype demonstrates the larger
concept.

3. IMPLEMENTATION
Section 2 described the building blocks of OTS. The

prototype OTS implementation only has the Dataplane
agent functionality built in. Rest of the subsystems will
be integrated in the future.

3.1 Controller
On-Demand Secure Circuits and Advanced Reserva-

tion System (OSCARS) [3] is a provisioning system de-
veloped by Energy Sciences Network (ESnet). It pro-
vides multi-domain, high-bandwidth, virtual circuits that
guarantee end-to-end network data transfer performance.
Today, OSCARS virtual circuits carry about fifty per-
cent of ESnet’s annual 60 petabytes of traffic, support-
ing large scale sciences such as High Energy Physics,
Climate, Computational Astrophysics, and Biological
and Environmental Research.

The OSCARS system in this instance acts as a typical
SDN controller, albeit with several specific extensions
(see 2.1) to leverage the transport OpenFlow capabil-
ities of the OTS. The initial handshake between OS-
CARS and OTS involves the characteristic exchange of
OFPT_HELLO followed by OFPT_FEATURES_REQUEST and
OFPT_FEATURES_REPLY messages [11]. However, Open-
Flow extension messages as described above are used
for optical specific information.

3.2 OTS Agent - Virtual Switch
The prototype OTS implementation is coupled with

the Infinera DTN [8], which embodies the optical trans-
port NE. The DTN has fully flexible OTN, SONET/SDH
and Ethernet add/drop capabilities with OTN [9] line
side wavelength Optical Carrier Groups (OCG), and in-
cludes an embedded GMPLS control plane for end-to-
end routing and provisioning.

To determine the tributary ports and line-side wave-
lengths to be used, a simple manually edited configura-
tion file is referenced. In the future, this will be part
of automated topology learning and could also be man-
aged by OF-Config set of protocols. Given that these
are TDM circuits, the incoming traffic payload is digi-
tally wrapped/containerized into OTN optical channels
and transported. There is no header or label lookup
done on incoming traffic, and therefore the configura-
tion file itself is sufficient as a simple flow table. In
addition, the configuration file can specify ”slices” of
an NE that can be virtualized into separate tributary
port/line side wavelength resources controlled by dis-
tinct OTS instances. This allows service providers to
sell wholesale bandwidth to multiple third party/tier-

2 providers, who can only control their portion of the
equipment/resources.

4. RESULTS AND OBSERVATIONS

4.1 Network Setup
We used ESnet’s Long Island Metropolitan Area Net-

work (LIMAN) to demonstrate SDN control of the trans-
port optical backbone by combination of OSCARS con-
troller and OTS. Fig. 7 shows the setup. DTN nodes
A and B are SDN aware and the two embedded OTS
agents offer an abstracted view of the NEs. These nodes
connect to the ESnet production network via pair of
optical fibers lit via a DWDM system. These nodes
are interconnected by a direct fiber connection as well.
Hosts, each with 40G Ethernet interfaces, connect to
each of these transport SDN nodes. Using OpenFlow,
we setup two 40G circuits between the nodes A and B,
one circuit over the direct fiber link and the other over
the set of production nodes. The fiber path traversed
by the optical circuit is transparent to the end-hosts.
The hosts see each circuit as a direct one-hop IP link
connecting each other.

Figure 7: Network Setup

4.2 Measurements
The measurements were done for a 40GbE circuit

reservation from Node A to B (Fig. 7). This only in-
cludes the time taken by the Controller to compute the
path. The time can be further optimized, by leverag-
ing faster processing platforms for the Controller. This
metric was specifically chosen so we could compare the
time involved in setting up the path using SDN Con-
troller and contrast it with a distributed signaling ap-
proach. We take note that the time to configure each
NE to setup a circuit remains the same irrespective of
the centralized SDN or distributed signaling approach
taken to communicate the cross-connect action.

5



Mode Min Max Mean Std. Dev

Implicit 2 7 2.84 0.98
Explicit 2 5 2.95 0.87

Table 1: Circuit path computation latencies (s)

Given a fairly simple topology, higher latency ob-
served is for the first circuit setup request. For the first
request, OpenFlow session needs to be established with
the OTS agents and hence the higher latency. Once the
session is active, the time delay just involves the Con-
troller computing the required path based on the exist-
ing topology. Since this experiment is a prototype, most
of the topology and node/link information was statically
configured. In the future, OTS Discovery agent is re-
sponsible to provide the Controller with the necessary
topology and network resource information. This will
be planned within the next phase of work.

5. SCOPE FOR FUTURE WORK
There are several additions to OTS that could provide

full featured network virtualization capabilities. From
an implementation perspective, we wish to fully inte-
grate the Monitoring and the Discovery agents into OTS
for fault/alarm propagation and port/link discovery re-
spectively. Currently for this prototype implementa-
tion, the ports, optical channels and links are hand-
configured through a configuration file. But we would
need a dedicated info model, similar to Open vSwitch
Database [7], to house the configuration information
and advertise it to the Controller. This allows the Con-
troller to discover the complete topology depending on
the mode of operation (Implicit/Explicit). JSON en-
coded data could be used to exchange the extracted
topology between OTS and the Controller.

From the point of view of standardization, other im-
portant functions that are inherent to core transport
networks have to be factored in, for example, protection
and restoration. Typically, these are part of the control
plane (MPLS FRR or GMPLS restoration).Thorough
studies need to be done to determine if these require
explicit incorporation within OpenFlow protocol, or the
embedded software layer on the transport NE can take
care of that function. Further, if domain specific param-
eters (like optical impairments, OSNR, channel power
levels etc) are needed, these need not be a part of the
protocol itself. Instead, a management interface like
OF-Config or NETCONF can be used to manage these.

6. CONCLUSION
The SDN approach has been applied successfully to

the optical transport network through the instantiation
of a virtual transport switch architecture and abstrac-
tion described in this paper. This approach has been

shown as practical through implementation and demon-
stration over a metro-area network. This architecture
can easily be extended from optical transport to con-
verged packet-optical transport architectures including
MPLS or MPLS-TP core backbones as well. Includ-
ing the transport network within the SDN paradigm
provides compelling technical and economic advantages
to large service providers looking to efficiently engineer,
manage and evolve their networks to meet the ’big data’
challenges and cater to new on-demand ’cloud’ applica-
tions. The transport infrastructure can now be made
open and uniformly programmable, enabling multi-layer,
multi-domain and multi-vendor optimization in both
core and metro networks.

Network virtualization through OTS enables building
an overlay network that applications can program to
meet their specific service requirements irrespective of
underlying protocol or encapsulation layers (L1/L2/L3
or OTN/MPLS/IP) used. Efforts are already underway
within Open Networking Foundation (ONF) to build
consensus around the standardization of transport ex-
tensions to OpenFlow (Optical Transport WG). We be-
lieve that these extensions will be an important element
in control and management of packet-optical architec-
tures within the core of the network.

7. REFERENCES
[1] Casado, M., Koponen, T., Shenker, S., and

Tootoonchian, A. Fabric: a retrospective on
evolving SDN. In Proc. of HotSDN (2012).

[2] Das, S., Parulkar, G., and McKeown, N.
SDN Based Unified Control Architecture. In
Photonics Conference (IPC), 2012 IEEE (2012),
pp. 778–779.

[3] Guok, C., Robertson, D., Chaniotakisy, E.,
Thompson, M., Johnston, W., and Tierney,
B. A User Driven Dynamic Circuit Network
Implementation. In GLOBECOM Workshops,
2008 IEEE (2008), pp. 1–5.

[4] IETF. RFC3031: Multiprotocol Label Switching
Architecture, January 2001.

[5] IETF. Generalized Multi-Protocol Label
Switching (GMPLS) Architecture, July 2004.

[6] IETF. RFC6215: A Framework for MPLS in
Transport Networks, July 2010.

[7] IETF. ovsdb-draft-00: The Open vSwitch
Database Management Protocol, August 2012.

[8] Infinera. DTN
http://www.infinera.com/products/dtn.html.

[9] ITU. G.709: Interfaces for Optical Transport
Network, Feb 2012.

[10] Mogul, J. C., and Congdon, P. Hey, you
darned counters!: get off my ASIC! In Proc. of
HotSDN (2012).

6



[11] Pfaff, B. OpenFlow Switch Specifications 1.0.0,
Dec 2009.

[12] Suresh, L., Schulz-Zander, J., Merz, R.,
Feldmann, A., and Vazao, T. Towards
programmable enterprise WLANS with Odin. In
Proc. of HotSDN (2012).

7


